Proceedings of the Jangjeon Mathematical Society www.jangjeon.or.kr
20 (2017), No. 2. pp. 193 - 201 http://dx.doi.org/10.23001/pjms2017.20.2.193

Analysis of 90/150 Cellular Automata with
Extended Symmetrical Transition Rules

Han-Doo Kim!, Sung-Jin Cho?*, Un-Sook Choi®, and Min-Jeong Kwon*

! Institute of Basic Science, Department of Applied Mathematics, Inje University
Gyeongnam 50834, Korea, mathkhd@inje.ac.kr
2 Department of Applied Mathematics, Pukyong National University
Busan 48513, Korea, sjcho@pknu.ac.kr
3 Department of Information and Communications Engineering,
Tongmyong University, Busan 48520, Korea, choies@tu.ac.kr
4 Department of Mathematics and Computer Science,
Korea Science Academy of KAIST, Busan 47162, Korea, mjblack02@hanmail.net

Abstract.

In this paper we analyze 90/150 cellular automata with extended sym-
metrical transition rules of various types. The proposed method is an ex-
tension of methods for the synthesis of 90/150 CA proposed by Sabater
et al. [7] and Cho et al. [10]. Also the method is an extension of the
results of Choi et al. [12] for the case of 90/150 CA. By the proposed
method, we can compute efficiently characteristic polynomials of large
cell CA.

Keywords: Cellular automata, Characteristic polynomial, Symmetrical tran-
sition rule, Rule vector.

1. Introduction

Cellular Automata(CA) were originally introduced by Von Neumann in early
1950’s in order to study the logical properties of self-reproducing machines [1].
Wolfram in early 1980’s suggested a simplified two-state three-neighborhood
1-D CA with cells arranged linearly in one dimension [2]. CA has a simple, reg-
ular, modular and cascadable structure with logical neighborhood interconnec-
tion. The simple structure of CA with logical interconnections are ideally suited
for hardware implementation. For these reasons CA have been used for diverse
applications such as pseudorandom-number generation, error-correcting codes,
cryptography, and pattern classification, etc. ([5] ~ [10]). Cho et al. ([10],[11])
analyzed characteristic polynomials of group CA and non-group CA. Moreover
they proposed efficient methods of synthesis of 90/150 maximum length CA[11].
Sabater et al. [7] and Cho et al. [10] proposed broad classes of cryptographic
interleaved sequences generated by linear 90/150 CA obtained by concatenating
the basic automaton. In this paper we analyze null-boundary 90/150 CA with

* Author to whom all correspondence should be addressed.
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extended symmetrical transition rules. The proposed method is an extension of
methods for the synthesis of CA proposed by Sabater et al. [7] and Cho et al. [10].
Also the method is an extension of the results of Choi et al. [12] for the case of
90/150 CA. By the proposed method, we can compute efficiently characteristic
polynomials of large cell CA.

2. Preliminaries

A CA consists of a number of interconnected cells arranged spatially in a
regular manner [2]. In most simple case, a CA cell can exhibit two different
states(0 or 1) and the next state of each cell depends on the present states of its
three neighborhoods including itself. The state si™ of the ith cell at time (t41)
is denoted as

S$+1 = fi(sﬁ—lv 527 S§+1)7

where st denotes the state of the ith cell at time ¢ and f; is the next state
function called the rule of the CA. If the next state generating logic employs
only XOR logic then it is called a linear rule. And a CA with all the cells having
linear rules is called a linear CA [9]. Since a linear CA employs XOR logic only
as the next state function, it can be represented as a matrix referred to as the
state transition matriz over GF(2). An n-cell CA is characterized by an n X n
state transition matrix. The state transition matrix 7" is constructed as

dl a1.20 -0 0
az1dy azz---0 0
T = 0 a3,2d3 -0 0

0 0 0 o lpp—1 dn

of the jth cell

1 , if the next state of the ith cell depends on the present state
- {
0 , otherwise.

And a; :di, = 1,2.,~~~.,TL.

In this paper, a CA is a null-boundary 90/150 CA fully specified by which
cells use 90 and 150. A natural form for the specification of 90/150 CA is an
n-tuple < dy,dg, - - -,d, >, called the rule vector, where d; = 0 (resp. 1) if cell 4
uses rule 90(resp. 150).

A polynomial is said to be a CA-polynomial if it is the characteristic poly-
nomial of some 90/150 CA. All irreducible polynomials are CA-polynomials [4].
In [4], Cattell et al. proposed a method for the synthesis of one-dimensional
90/150 Linear Hybrid Group CA(LHGCA) for irreducible polynomial. Cho et
al. [11] proposed a new efficient method for the synthesis of one-dimensional
90/150 LHGCA for any CA-polynomial as well as irreducible polynomial by us-
ing Lanczos tridiagonalization algorithm. This algorithm is efficient and suitable
for all practical applications. Sabater et al. [7] and Cho et al. [10] proposed a
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method of constructing a linear 90/150 CA with characteristic polynomial f(z)?
by concatenating the basic automaton whose characteristic polynomial is f(z).
Successive applications of this result provide one with CA whose characteristic
polynomials are f(z)2, f(z)%",-- .

3. Analysis of CA with extended symmetrical transition rules

In this section, we analyze characteristic polynomials of cellular automata
with extended symmetrical transition rules of various types. The characteristic
polynomial A,, of an n-cell CA C,, is defined by A, = |T,, ¢ zI,,| where z is
an indeterminate, I,, is the n x n identity matrix and 7;, is the state transition
matrix of C,,. For any n-cell 90/150 CA whose state transition matrix is 7},, the
minimal polynomial for 7, is the same as the characteristic polynomial for 7,
[3]. Let A,, be the characteristic polynomial of 7;,. Then the following recurrence
relation holds:

A, = ($+dn)An71+an71,nan,n71An72 (31)

where Ay =2 +dq, Ag =1 [4]. (3.1) provides an efficient algorithm to compute
A,, of a given CA from its rule vector. We denote the characteristic polynomial
of sub-CA consisting of cells ¢ through j by A; j, where ¢ < j. We simply denote
Ay by A;. A; is said to be a CA-subpolynomial. Let T be the state transition
matrix corresponding to the state transition matrix 7,, of an n-cell CA as the

following
dy, pn-1 O 0 0---0 0 0
Un -1, dn—1 An-17m-20 0---0 0 0
§ 0 an—2,n—1 dn—2 an—2,n—3 0 e 0 O 0
Ty =
0 0 0 0 0---agsdy ag,
0 0 0 0 0---0 ady

and let A’ be the characteristic polynomial of 7);. Then A} = A,,.

Definition 3.1 [12] Let 7}, be the state transition matrix of an n-cell CA
and let )¢ be the state transition matrix corresponding to T;,. Let Sz, be the
following state transition matrix of a 2n-cell CA Cs,,.

0 0 -0
o
0 0 -0
B an,n+10 -0
SQn = 0---0 Ap+1,n
0---0 0
S T,
0---0 0
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Then Cs,, is called the CA with symmetrical transition rules.

Let T}, =< ay, ag, - - -, a, > be the state transition matrix of an n-cell 90/150
CA and let T, =< ap,an-1, --,a1 > be the state transition matrix corre-
sponding to 7). And let S2,, =< aj,a2, -, ap, Gy, -+, a2,a1 > be the state

transition matrix of a 2n-cell 90/150 CA Cs,,,. And let Uy, be the character-
istic polynomial of Sy,,. Then the following holds: U, = (A, + A,_1)?. Let
Tw=<ay, -+, an_1,G, > be the state transition matrix of an n-cell 90/150 CA
and let Az be the characteristic polynomial of 7. Then Az = A, + A,,_1. Thus
Uz, = (Ax)? [12].

Theorem 3.2 [12] Let D; be the characteristic polynomial of the 1-cell
90/150 CA with rule vector < d >. Let Sap,41 =< a1,a2, -+, ap, d, ap, -+, a2,a1 >
be the state transition matrix of a (2n+1)-cell 90/150 CA Cay,41. And let Usyqq
be the characteristic polynomial of S3,41. Then

2
Usny1 = D145,

Here we extend the symmetrical transition rules by adding the 2-cell CA <
dy, dy > as follows. The recurrence relation between the characteristic polynomial
Usp 42 of the (2n + 2)-cell 90/150 CA and A,,’s is given in the next theorem.

Theorem 3.3 Let T,, =< ai,as,---,a, > be the state transition matrix
of an n-cell 90/150 CA and let Dy be the characteristic polynomial of the 2-
cell 90/150 CA with rule vector < di,ds >. Let Sopqo0 =< ThdidoT) >:1=<
a1, a2, ,ap,dy,da, ap, - - -, az, a1 > be the state transition matrix of a (2n+2)-
cell 90/150 CA Cay42. And let Usy, 42 be the characteristic polynomial of Sz, 4.
Then
U2n+2 = D2A$L + (dl + d2)AnAn—l + Ai—l

Proof. By cofactor expansion along (n + 2)th row, we have

Usnz = At (x+d2)An+1-|A[+1-|B]
A (@ 4da)An +1-ApAy+1- A A,
(x +do){(z +d1)A, + A1} A, + A A,
+ {(.’L‘ + dl)An + An—l}An—l by (31)
= DQA?L + (dl + dg)AnAn,l =+ A2

n—1s

where A is the submatrix obtained by removing the (n + 2)th row and the
(n41)th column of Sa,,42+212,,+2 and B is the submatrix obtained b_y removing
the (n+2)th row and the (n+3)th column of Sa,, 2+ 1o, 12 , and A:Ldil denotes
the characteristic polynomial of rule vector Sy, 11 =< ay, -, an,dy >.

Corollary 3.4 Let T,, =< ay, a2, - -,a, > be the state transition matrix of
an n-cell 90/150 CA. Let Sop42 =< T5,ddT) > be the state transition matrix of
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Table 1. Characteristic polynomials for (di,dz2) = (0,1)

[(a1, az, a3)[rule vector for (di,d2) = (0, 1)] characteristic polynomial Ug |
(0,0,0) <0,0,0,0,1,0,0,0 > 2® + 2" + 2% + 2% + 27 + 2° + 1(irreducible)
(0,0,1) <0,0,1,0,1,1,0,0 > 2° + 27 + 27 + 2% + 2% + = + 1(irreducible)
(0,1,0) <0,1,0,0,1,0,1,0 > @+’ +22 +z+ D)@+ +1)

(0,1,1) <0,1,1,0,1,1,1,0 > @+ +D(@@*+z+1)

(1,0,0) <1,0,0,0,1,0,0,1 > @+’ +2’+z+ D)@ +x+1)

(1,0,1) <1,0,1,0,1,1,0,1 > @+ 2+ D)@+ +1)

(1,1,0) <1,1,0,0,1,0,1,1 > 2° + 2" + 2% + 2° + 27 + = + 1(primitive)
(1,1,1) <1,1,1,0,1,1,1,1 > ® + a7 + 2% + x + 1(primitive)

Table 2. Characteristic polynomials for (di,d2) = (0,1)

Ty =< ay,---,a8 > I characteristic polynomial Uyg of < T5017% >
<0,0,0,0,1,0,0,0 >[(z + 1)*(z" + 2™ +2° +x+1)(x’+x +1)
<0,0,1,0,1,1,0,0>(m“+x“+x“+x + 2 +x+1)(x +a:+1)
<O,1,0,0,1,0,1,0>(a: +2"0 + 27 + 2%+ 2% + 27 +1)(a: +2° + 2"+ 27+ 1)
(
(

<0,1,1,0,1,1,1,0 >[(2®° +z + D) (= + 2™ + 2% +2° + 2T + 27 + 1)
<1,0,0,0,1,0,0,1 >[(z™ + 2™ + 2™ + 2™ + 2° +:v +m +2+ D" +z+1)
<1,0,1,0,1,1,0,1 >[z(z + 1)%(2° + 27 +1)(x +2¥+2°+z+ )(@"+z+1)
<1,1,0,0,1,0,1,1 >[(2? +:c+1)(x +x +x +a: +2+z+1)

(«® +a: +a: +ac +ac +x +1)

@+ +2"+2" +27+z+ )@ +2 +2+ 2"+t + 1)

<1,1,1,0,1,1,1,1 >

a (2n+2)-cell 90/150 CA Cajp42. And let Usy, 42 be the characteristic polynomial
of S2n+2- Then
U2n+2 = (E2An + An—1)2

, where Ey =z + d.

For the case d; = dy = @, the characteristic polynomial Us,, of rule vector
<A1,y Up—1, Gy Gy, Ap—1, - -+, a1 > is as the following:
Usn-ty+2 = (BaAp_1 + Ap_2)® = A2,
where Ey =z + a,.
Remark A Theorem 3.3 is an extension of a method of constructing a

90/150 CA with characteristic polynomial f(x)2" proposed by Sabater et al. [7]
and Cho et al. [10].

Example 3.5 Consider the case dy = 0,dy = 1:
In Theorem 3.3, Us = Dy A% + A3As + A3. From Az = (z + a1)(z + a2)(x +
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az)+ay+az and As = (z+a1)(x+az)+1, we obtain Table 1. Using Uz = (2% +
2+1)A2+ Ag A7+ A2, the characteristic polynomials for the case (dy, d2) = (0, 1)
are in Table 2.

Here, we extend the symmetrical transition rules by adding the 3-cell CA
< dy,ds,ds > as follows. The recurrence relation between the characteristic
polynomial Us,, 43 of the (2n + 3)-cell 90/150 CA and A,,’s is given in the next
theorem.

Theorem 3.6 Let T,, =< ay, a2, ---,a, > be the state transition matrix of
an n-cell 90/150 CA and let D3 be the characteristic polynomial of the 3-cell
90/150 CA with rule vector < dy,da,d3 >. Let Sapy3 =< ThdidedsT) >:=<

a1, a2, -, ap,dy,da, d3, ap, - - -, az, a1 > be the state transition matrix of a (2n+
3)-cell 90/150 CA Cgzp43. And let Us,43 be the characteristic polynomial of
527L+3. Then

Usnisz = D3 A2 + (dy + ds) (x4 do) Ap A1 + (. + do) A%,

Proof. By cofactor expansion along (n + 3)th row, we have

Usnis = A2 (x+d3)A,+1-|A|+1-|B]
= AR (@4 ds) Ay + AT A+ A AL
{(a:+d2)An+1+A He4+d3)A, +{(x+d1)A, + A1} A,
+ {(.Z'+d2) 'L+1 +A }An 1 by (3 1)
= {(ZL’+d2) ,L+1+An}(33+d3) n+($+d1) (1‘+d2)An+1A
{( )
(

x4+ do)[(z + d1)An + Apq] + Ap}(z + dg)An + (z +d1)A2
+ Zl?+d2){(l’+d1)A + An 1}An 1 bV (3 1)
= {(z+dy) (x +do)(x + d3) + dy + d3} A2 + (dy + d3)(z + do) A Ay
(‘T+d2) n—1
= An + (dl + d3)('B + d?)AnAn—l + (£ + d2)A72L_1-,

where A is the submatrix obtained by removing the (n+3)th row and the (n+2)th
column of Sy, 13 + xlz,4+3 and B is the submatrix obtained by rcmoving the
(n + 3)th row and the (n + 4)th column of Sa,, 43 + $12n+3 and A dz denotes
the characteristic polynomial of rule vector Sy, 12 =< ay, -, an, dl, d2 >.

Remark B In the case di = d3, Theorem 3.6 is an extended result of
Theorem 3.2.

Using Uaz = (2° + 22 + 1) A% + £A10Ag + £ A2, the characteristic polyno-
mials for the case (dy,ds,d3) = (0,0,1) are in Table 3. Here, we extend the
symmetrical transition rules by adding the 4-cell CA < dy,ds, d3, dy > as fol-
lows. The recurrence relation between the characteristic polynomial Us,, 44 of the
(2n 4+ 4)-cell 90/150 CA and A,,’s is given in the next theorem.

Theorem 3.7 Let T;, =< ay,as,---,a, > be the state transition matrix of
an n-cell 90/150 CA. And let D4 be the characteristic polynomial of the 4-cell
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90/150 CA with rule vector < dl., dz., dg., dy >. Let 527L+4 =<< T,Ld1d2d3d4T; >i=<
a1,a9, -+, Ay, d1,da, d3,dy, ap, - --,az,a1 > be the state transition matrix of a
(2n + 4)-cell 90/150 CA Cajp44. And let Usy,44 be the characteristic polynomial
of Sa;,4+4. Then

Usnya = DyAZ +{(dy + da)(z + d2)(z + d3) + (d1 + da + d3 + da) } A, Ay
+ {(z + do)(z + ds) + 1}AZ_,.

Proof. By cofactor expansion along (n + 4)th row, we have

Usppa = A% (x +da)A, +1-|A]+1-|B|

= Al (@ +da) Ay + A2 A, + A;ﬁ;: A,
= {(I + d3)And-Ql—2d2 + And-ﬁl-l (‘T + d4)A + And-ﬁl—2d2 A'n«

{(‘T + d3) 7;:1_2'12 + A7L+1}A7L 1 by (3 1)
= {(z+d3)(x+d)A, + Ay + (z+d3)An_1 } AL
+ {(LL' + d4)A + An 1}An+1
= {(ZE + dJ)[ z+ d4)An + A, + (:l: + dJ n—l}{(l' + dQ)A:L?l + An}
+ {(z 4+ da)An + A1 YAV, by (3.1)
= {(+d2)(@+d3)(x+ da) Ay + (z+ d2) Ay, + (x +da) A,

+(@ 4+ do)(z 4+ d3)Ap—1 + Ap_1 YAV + {(z + ds)(z + dy) + 1342
+(le+d5)A,LA,L 1
= {(ZL‘ + d2)(:l) + d3)(:1? + d4)An + (ZE + dQ)An + (.CL' + d4)An
+(ZI? + d2)(3} + d3)An_1 + An_l}{(.fl' + dl)An + An—l}
+{(z + d3)(z + ds) + 1} A2 + (z +d3) A An—q by (3.1)
= DyA2 +{(di +da)(z + d2)(x + d3) + (dy + d2 + ds + da) } A Ar 1
+{(@+d2)(z +d3) +1}A7_,

where A is the submatrix obtained by removing the (n+4)th row and the (n+3)th
column of Sa,4+4 + xls,4+4 and B is the submatrix obtained by removing the
(n+4)th row and the (n+5)th column of Sa,, 44 +x12n+4, and A:Ld_f_ldz 3 denotes
the characteristic polynomial of rule vector S, 13 =< a1, -, an,dy, da, d3 >.

Example 3.8 Lﬁ dy = d4 and do = d3. And let E4 be the characteristic
polynomial of < dy, dy >. Then

Ugn+4 = D4A2 + {(93 + dg)(ﬂ? + d2 + 1}An 1
(E4An + (Zl? + dQ)A — )2

Using Uyg = (2 +23+22+1) A3+ (22+1) A3 Ao+(22+1) A2, the characteristic
polynomials for the case (dy, da, ds, d4) are in Table 4. Table 4 shows the primitive
polynomial of degree 10 generated from 3-cell 90/150 CA.

Remark C In the cae d; = d4, Theorem 3.7 is an extended result of Theorem
3.3.
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Table 3. Characteristic polynomials for (di,d2,ds) = (0,0,1)

Ty =< ai,---,a10 >

I characteristic polynomial Uas of < 11900177, >

<0,0,0,0,0,0,0,0,0,0 >

@4+ 2P+ + 20 +2° + 27+ ) (2 + 27+ 1)
(z* + 2%+ 1)

<0,0,0,0,0,0,0,0,0,1 >

mz.s +x21 +x11 +xZU +x19 +w1&+xl.j +zlz +xll +£L‘10
a7 + 25 +2° + 2" + 2 + 2% + 1 (primitive)

<0,0,0,0,0,0,0,0,1,0 >

@B+ T+ 2+ 42T+ 22+ DNV +2° 2T+ 27 1)

<0,0,0,0,0,0,0,0,1,1 >

x(x4+x3+1)($18+x14+5513 _,’_xlz_,’_mll +IL'10+139
+a2® + 2" +2° +a2' +2° + 1)

<0,0,0,0,0,0,0,1,0,0 >

<0,0,0,0,0,0,0,1,0,1 >

(w17+$15+x14+$12+w10+m8+w5+w4+xé+xl+l)
(6
(

a4+ 25+ a® 2%+ 1)
(@ 4+ 20 + 2 42"+ 2%+ 2%+ 1)

<0,0,0,0,0,0,0,1,1,0 >

P+ + D@+ + 2+ + 2T+ 27+ 1)
L S SRS g L SRS y SR R R

+a! 4+ 2! + 27 + 2 + 2° + 2? + 1(primitive)

<0,0,0,0,0,0,0,1,1,1 >

z(@P + 2P+ 2%+ 2+ D"+ 2%+ 1)

<0,0,0,0,0,0,1,0,0,0 >

@+ 2B+ + 2 e+ e ¥ 2t ¥ 2T+ )
(@3 + 22 +1)

<0,0,0,0,0,0,1,0,0,1 >

@@+ + 2 2 2T+ 2%+ 1)

Table 4. Characteristic polynomials for (d1,ds2,ds, d4)

| Tio =< ai,---,a10 > I characteristic polynomial Uig of < T3d1d2d3dsTs > |

<1,1,1,0,1,0,1,1,1,1 >

20 + 2% + 2% + 27 + 2 + 2 + 1(primitive)

<0,0,0,0,1,0,1,0,0,0 >

2 + 2% + 27 + 2 + 1(irreducible)

<1,0,1,0,1,0,0,1,0,1 >

@+z+ )" +2°+2"°+z+1)

<0,1,0,1,1,0,1,0,1,0 >

(@’ +2°+ D)@’ +a"+2° +x+1)

<0,0,1,1,0,1,1,1,0,0 >

20 +2° + 2% + 27 + 2° + x + 1(irreducible)

<0,1,0,0,0,1,0,0,1,0 >

20 +2” + 2% + 2° + 27 + 2° + 27 + = + 1(primitive)

<0,1,0,0,1,1,0,0,1,0 >

22(z" + 2% +1)2

<1,1,0,0,1,1,0,0,1,1 >

(@° +2° +2° + 2+ 1)°

<1,1,1,0,0,0,0,1,1,1 >

(z+ 1)z’ +2° +2° +z + 1)°

<1,0,1,0,0,0,1,1,0,1 >

(z+1)*@®+a" +27+z+1)

4. Conclusion

In this paper, we analyzed the properties of 90/150 CA with extended sym-
metrical transition rules. The proposed method is an extension of methods for
the synthesis of 90/150 CA proposed by Sabater et al. [7] and Cho et al.[10].
Also we extended the results of Choi et al. [12] for the case 90/150 CA. By the
proposed method, we can compute efficiently characteristic polynomial of large

cell 90/150 CA.
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